Traffic Signal Operations Workshop

An Engineer's Guide to Traffic Signal Timing and Design

Course Notes

Product 0-5629-P2

TRAFFIC SIGNAL OPERATIONS WORKSHOP

```
Date:
Location:
Contacts: Jim Bonneson, (979) 845-9906, j-bonneson@tamu.edu
```


Agenda

(Agenda times to be determined based on workshop focus)
Introduction
Session 1: Signal Controller Timing
Session 2: Signal Coordination Timing
Session 3: Signal Phasing and Operation
Session 4: Advanced Signal Timing Settings
Session 5: Detection Design and Operation
Session 6: Diamond Interchange Operations

Course Materials:	Course Notes
	Traffic Signal Operations Handbook
	Traffic Signal Coordination Optimizer Software (TSCO)

Traffic Signal Timing and

 Detection DesignTraffic Signal Operations Workshop

Welcome
- Introductory Session
- Objective, outcome, scope
- Background
- Handbook and Workshop Organization
- Agenda

Objective \& Outcome

- Objective
- To inform participants about...
- Effective signal timing and design practices
- Availability of tools to assist with timing and design
- To demonstrate how to apply these tools
- Outcome
- Participants should be able to...
- Determine effective signal settings and detection layout
- Apply the evaluation tools

Scope

- Scope

- Workshop is intended to show engineers and technicians how various guidelines and tools can be used to develop effective signal timing and detection design
- Participant is assumed to have a working knowledge of traffic signal equipment and the authority to make, or recommend, changes to the operation of this equipment

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Background

- Project 0-5629
- "Best TxDOT Practices for Signal Timing and Detection Design"
- Project Director:
- Henry Wickes

Handbook Organization

- Organization Objectives
- Quick-response
- Easy to find guidelines by locating in one location
- Easy to use guidelines via table look-up and figures
- Chapters
- Appendices
- Overview
- Concepts
- Procedure
- Guidelines
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Handbook Organization

- Concepts

- Defines controller features and design terms
- Something you read once
- Experienced persons may not need this section
- Procedure
- Describes typical steps in signal timing
- Something you read once
- Guidelines
- Information about where, when, what to use
- Information you use all the time

Workshop Organization

- Organization Objectives
- Chapter by chapter (appendix by appendix)
- Within a chapter or appendix
- One topic at a time (e.g., minimum green)
- Brief review of concepts
- Detailed discussion of guidelines
- Example application of guidelines
- Exercises to practice use of guidelines
- Two items to note...
- Emphasis is on GUIDELINES
- In the Handbook, concept material on a topic is not adjacent to guideline material on a topic
\qquad

Agenda

- Session 1:
- Signal Controller Timing
- Session 2:
- Signal Coordination Timing
- Session 3:
- Signal Phasing and Operation
- Lunch Break

Agenda

- Session 4:
- Advanced Signal Timing Settings
- Session 5:
- Detection Design and Operation
- Session 6:
- Diamond Interchange Operations

Policy on Questions

- Policy Points

- Questions are encouraged
- Please ask them as they occur to you

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1. Signal Controller Timing

- Chapter 2 Guidelines
- Phase settings
- Minimum green setting
- Maximum green setting
- Yellow change interval
- Red clearance interval
- Phase recall mode
- Passage time
- Detector settings
- Pedestrian settings

Minimum Green Setting

- Guidelines
- Considerations for selecting min. green
- Driver expectancy
- Queue clearance
- Pedestrian crossing time
- Each consideration has a different minimum green requirement
- Consider all that apply and use the largest

Minimum Green Setting		
- Driver Expectancy - Applies to every phase		
Phase	Approach Type	Minimum Green, s
Through	Major-road	8 to 15
Through	Minor-road	5 to 10
Left-turn	All	5 to 8

Minimum Green Setting	
- Queue Clearance	
- Applies when	
• Advance-only detection is used	
• Variable initial is not used	
Distance between Stop Line and Detector, ft Minimum Green, s 0 to 25 5 26 to 50 7 51 to 75 9 76 to 100 11 101 to 125 13 126 to 150 15	

\qquad

Minimum Green Setting

- Pedestrian Crossing Time

- Applies when
- Phase serves a through movement
- Pedestrian push button not provided

- Pedestrian demand is likely to exist - Minimum Green (Gp)
- $\mathbf{G p}=\mathbf{W}+\mathrm{PCl}$
- where,

- W = walk interval (4 to 7 s)
- PCI = pedestrian change interval (10 to 30 s)
- Variables discussed later in this session
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Maximum Green Setting

- Concepts

- Maximum time of green display in the presence of a conflicting call

\quad Maximum Green Setting
- Guidelines
- Major-road through phase
- Minor-road through phase
- Left-turn movement phase

Maximum Green Setting

- Major-Road Through Phase

1) At least 30 seconds
2) At least 10 seconds longer than the minimum green setting
3) At least as long, in seconds, as $1 / 10^{\text {th }}$ the peakperiod volume, in vehicles per hour per lane

------ $=---$

Maximum Green Setting

- Major-Road Through Phase

1) At least 30 seconds
2) At least 10 seconds longer than the minimum green setting
3) At least as long, in seconds, as $1 / 10^{\text {th }}$ the peakperiod volume, in vehicles per hour per lane

- Example:
- Vol. $=360$ veh/h/ln, min. green $=12 \mathrm{~s}$
- Max. green = larger of: (30, 12+10, 0.1×360)
- Max. green = 36 s
\qquad

Maximum Green Setting

- Minor-Road Through Phase

1) At least 20 seconds
2) At least 10 seconds longer than the minimum green setting
3) At least as long, in seconds, as $1 / 10^{\text {th }}$ the peakperiod volume, in vehicles per hour per lane

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Maximum Green Setting

- Left-Turn Movement Phase

1) At least 15 seconds
2) At least 10 seconds longer than the minimum green setting
3) At least half as long as the maximum green for the adjacent through movement

Maximum Green Setting

- Left-Turn Movement Phase

1) At least 15 seconds
2) At least 10 seconds longer than the minimum green setting
3) At least half as long as the maximum green for the adjacent through movement

- Example
- Min. green $=6 \mathrm{~s}$
- Max. green = larger of: (15, 6+10, 0.5×36)
- Max. green $=18$ s

Example Problem

- Application
- Maximum green setting
- Calculation Tool
- Traffic Signal Coordination Optimizer (TSCO)
- Organization
- Introduce TSCO
- Work example problem using TSCO
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Introduction to TSCO

- TSCO Tools
- Analysis
- Timing plan evaluation and optimization
- Splits
- Phase split calculation
- Volumes
- Turn movement count estimation
- Left-Turn Mode
- When to use protected left-turn phases
- Preemption
- Preemption worksheet for highway-rail crossings

\qquad

Example 1: Maximum Green

- Step 1: Collect Intersection Data - Data needs:
- Peak-period turn movement volume
- Minimum green setting
- Traffic data collection alternatives
- Conduct turn movement count
- Use TSCO to estimate turn movement counts

Example 1: Maximum Green

- Step 2: Estimate Peak-Period Volume
- Enter data in Volumes worksheet \quad Volumes α
- Major (E/W): arterial, AADT = 10,000 veh/d
- Minor (N/S): collector, AADT = 5,000 veh/d
- Both: 2 through lanes, $\mathbf{m i n}$. green $=10 \mathbf{s}$

Example 1: Maximum Green

- Step 2: Estimate Peak-Period Volume
- Find the westbound peak-period volume

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 1: Maximum Green

- Step 3: Determine Maximum Green Setting 1) At least 30 seconds
$\mathrm{G}_{\text {max }}=30 \mathrm{~s}$

2) At least 10 seconds longer than the minimum green setting
$\mathrm{G}_{\text {max }}=10+10=20 \mathrm{~s}$
3) At least as long, in seconds, as $1 / 10^{\text {th }}$ the peakperiod volume, in vehicles per hour per lane
$\mathrm{V}=430 / 2=215 \mathrm{veh} / \mathrm{h} / \mathrm{ln}$
$\mathrm{G}_{\text {max }}=0.1 \times 215=22 \mathrm{~s}$

Example 2: Maximum Green

- Given
- AADTs for an intersection
- The Questions
- What is the peak-period through volume for each road?
- What is the maximum green setting for...
- Major-road westbound through phase?
- Minor-road northbound through phase?
- Major-road eastbound left-turn phase?

Example 2: Maximum Green

- The Data
- AADT
- Major (E/W): 15,500 veh/d
- Minor (N/S): 7,500 veh/d
- Functional class
- Both: arterial
- Configuration

- Both: 2 through lanes per approach
- Minimum green settings
- Major (E/W) left-turn phases: 6 s
- Major (E/W) through phases: 12 s
- Minor (N/S) through phases: 14 s
- Work for 5 minutes
\qquad

Example 2: Maximum Green

- The Answers
- Major through:
- Minor through:
- Major left:

Yellow Change Interval

- Concepts
- Intended to alert a driver of an impending presentation of red indication
- TMUTCD guidance
- Range: 3 to 6 s
- Longer values used for higher speeds

Yellow Change Interval

- Guidelines
- ITE method
$\begin{aligned} & \text { ITE method } \\ & \text { - Equation: } \\ & \text { - where, }\end{aligned}$
$Y=1.0+\frac{1.47 \mathrm{~V}}{20+64 \mathrm{~g}}$
$-Y=$ yellow change interval (3 to 6 s)
$-\mathrm{V}=$ approach speed (mph)
- $\mathrm{g}=$ approach grade (ft/ft)

Speed, mph	25	30	35	40	45	50	55	60
Yellow, s	3.0	3.2	3.6	3.9	4.3	4.7	5.0	5.4

\qquad

Yellow Change Interval

- Guidelines
- Rounding to 5.0 s
- If $Y>5.0$, many engineers round down to 5.0 s
- If you do this...
- Apply consistently at all intersections
- Include the difference as a grace period when camera enforced

Speed, mph	25	30	35	40	45	50	55	60
Yellow, s	3.0	3.2	3.6	3.9	4.3	4.7	5.0	$\underline{5.0}$

Yellow Change Interval

- Guidelines
- Approach speed
- Through movements
- 85 ${ }^{\text {th }}$ percentile
- Posted speed limit
- Be consistent
- Left-turn movements
- Average of through speed and 20 mph

Through Speed, mph	Left-Turn Speed, mph
25 to 34	25
35 to 44	30
45 to 54	35
55 to 64	40
65 to 74	45

Red Clearance Interval

- Concepts
- A brief period of time after the yellow indication during which the ending phase and all conflicting phases display a red indication
- TMUTCD guidance
- Optional
- Not greater than $6 \mathbf{s}$

Red Clearance Interval

- Guidelines
- ITE method
- Equation: $\mathrm{Rc}=\frac{\mathrm{W}+\mathrm{L}}{1.47 \mathrm{~V}}$
- where,
- $\mathrm{Rc}=$ red clearance interval (6 s or less)
- $\mathbf{W}=$ width of intersection (+ cross walk)
$-L=$ length of design vehicle (use 20 ft)
- V = approach speed

Red Clearance Interval

- Guidelines
- Intersection width (W)
- Stop line to far edge of last conflicting lane
- May extend to beyond crosswalk

- Left-turn movements

- Use a straight line approximation of path

Red Clearance Intervals

- Guidelines

- Typical values
- Underlined values based on $Y=5.0$ s

Approach Speed, mph	Intersection Width, ft			
	50	70	90	110
30	1.6	2.0	2.5	3.0
40	1.2	1.5	1.9	2.2
50	1.0	1.2	1.5	1.8
60	1.2	1.4	1.7	1.9

Phase Recall Mode

- Concepts

- Recall causes the controller to place a call for a specified phase when the controller is serving a conflicting phase
- Types
- Minimum recall
- Maximum recall
- Pedestrian recall
- Soft recall

Phase Recall Mode

- Concepts
- Minimum recall
- Continuous call until the minimum green times out
- Maximum recall
- Continuous call until the maximum green times out
- Pedestrian recall
- Continuous call for pedestrian service until the pedestrian change interval times out
- Soft recall
- Call on a phase in the absence of any calls on a conflicting phase

Phase Recall Mode

- Guidelines
- Minimum recall
- Use on major-road through phases if no detection
- Maximum recall
- Use during detector failure
- Use to emulate pretimed operation
- Pedestrian recall
- Use when pedestrians are present every cycle
- Soft recall
- Use on major-road through phases with detection
\qquad

Passage Time

- Concepts

- Maximum amount of time a vehicle actuation can extend the green interval

Passage Time

- Guidelines

- Duration based on three goals
- Ensure queue clearance
- Satisfy driver expectancy (no unneeded extension)
- Reduce max-out frequency
$\begin{aligned} & \text { - Equation } \\ & \text { - PT = MAH }\end{aligned}-\frac{\text { Lv + Ld }}{1.47 \mathrm{~V}}$
- where,

- MAH = maximum allowable headway (3.0 s)
- Lv = detected length of vehicle (17 ft)
- Ld = length of detector (ft)
- V = approach speed (mph)

Passage Time

- Guidelines

- Stop line presence detection
- Inductive Loop
- Rule of thumb
$-\mathrm{PT}=85^{\text {th }} \%$ speed in $\mathrm{mph} / 20$

Passage Time					
- Guidelines - Stop line presence detection - Inductive Loop - Rule of thumb $-\mathrm{PT}=85^{\text {th }} \%$ speed in $\mathrm{mph} / 20$					
Detection	$85^{\text {th }}$ Percentile Speed, mph				
Zone Length,	20	25	30	35	40
$\mathrm{ft}^{\mathrm{ft}}$ (Passage Time (PT), $\mathrm{s}^{\text { }}$					
20	1.5	2.0	2.0	2.0	2.5
40	1.0	1.0	1.5	1.5	2.0
60	0.0	0.5	1.0	1.5	1.5
80	0.0	0.0	0.5	1.0	1.0

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Passage Time

- Guidelines

- Stop line presence detection
- Video detection
- PT = 0.0 s
- Use long detection zone (discussed later)

Detector Settings
- Concepts - Delay - Extend - Queue

Detector Settings

- Concepts

- Delay
- Actuation is delayed until the delay timer expires and the call is still present
Vehicle detected , Vehicle on , Vehicle detected
by the detector I detector I by the controller

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Detector Settings

- Concepts
- Queue
- Extends the phase until queue is serviced
- It is then deactivated until the start of the next conflicting phase

Detector Settings

- Guidelines
 - Delay
 - Use with stop line presence-mode detection serving turn movements from exclusive lanes
 - Right-turn movement
 - If opportunity for right-turn on red then,
 - Consider 8 to 14 s delay
 - Left-turn movement
 - If protected-permissive then,
 - Consider 5 to 12 s delay

\qquad

Pedestrian Settings

- Concepts
- Walk interval
- Time to alert pedestrian of opportunity to cross
- WALK indication presented
- Pedestrian change interval
- Time to cross street
- Flashing DON'T WALK indication presented

Pedestrian Settings

- Guidelines

- Pedestrian walking speed
- TMUTCD - 4 fps
- Other references - 3.5 fps
- Children and elderly pedestrians - 3.0 fps
- Pedestrian clearance time (PCT)
- Equation: PCT=Dc/Vp
- where,
- Dc = curb to curb crossing distance (ft) - $\mathrm{Vp}=$ pedestrian walking speed (fps)
- Pedestrian change interval (PCI)
- Equation: $\mathrm{PCI}=\mathrm{PCT}-(\mathrm{Y}+\mathrm{Rc})$

Pedestrian Settings

- Guidelines
- Pedestrian clearance time (PCT)

Pedestrian Settings			
- Guidelines - Pedestrian clearance time (PCT)			
Pedestrian	Walking Speed, ft/s		
Crossing	3.0	3.5	4.0
Distance, ft	Pedestrian Clearance Time (PCT), \mathbf{s}		
20	7	6	5
30	10	9	8
40	13	11	10
50	17	14	13
60	20	17	15
70	23	20	18
80	27	23	20
90	30	26	23
100	33	29	25

Pedestrian Settings

- Guidelines

- Pedestrian change interval
- Option 1
- Display flashing DON'T WALK
$P C I=P C T$
- Option 2
- Display flashing DON'T WALK before Y+Rc
- Display solid DON'T WALK during Y + Rc

$$
P C I=P C T-\left(Y+R_{c}\right)
$$

\qquad

Summary

- Chapter 2 Guidelines
- Phase settings
- Minimum green setting
- Maximum green setting
- Yellow change interval
- Red clearance interval
- Phase recall mode
- Passage time
- Detector settings
- Pedestrian settings
- Questions?

2. Signal Coordination Timing

- Chapter 3 Guidelines
- Coordination potential
- System settings
- Cycle length
- Offset
- Phase sequence
- Force mode
- Transition mode
- Coordination mode
- Phase settings
- Phase splits
- Dynamic splits
- Maximum green

\qquad

Coordination Potential

- Concepts
- What intersections should be included in a coordinated signal system?
- Considerations
- Traffic volume
- Segment length (distance between signals)
- Speed
- Access point activity
- Cycle length
- Signal system infrastructure

System Settings

- Settings Defining System Operation

- Cycle length
- Offset
- Phase sequence
- Force mode
- Transition mode
- Coordination mode

Cycle Length

- Concepts

- Total time to complete one sequence of signalization of all movements at an intersection
- Typical cycle length range
- Minor arterial streets: $\mathbf{6 0}$ to $\mathbf{1 2 0}$ s
- Major arterial streets: 90 to 150 s
- Optimum cycle length based on...
- Traffic volume, speed,
- Intersection capacity, phase sequence
- Segment length

Cycle Length

- Concepts

Cycle Length

- Guidelines

- Longer cycle lengths
- Increase capacity (1 percent for 10 s increase)
- More conducive to two-way progression
- Increase queue length
- Shorter cycle length
- Reduce delay (if adequate capacity provided)
- Under-saturated intersections
- Use minimum delay cycle length
- Over-saturated intersections
- Use shorter cycle length to minimize spillback
\qquad

Cycle Length

- Guidelines

Average Segment Length, ft	Cycle Length by Street Class and Left-Turn Phasing, \mathbf{s}					
	Major Arterial Street			Minor Arterial Street or Grid Network		
	No LeftTurn Phases	Left-Turn Phases on One Street	Left-Turn Phases on Both Streets	No LeftTurn Phases	Left-Turn Phases on One Street	Left-Turn Phases on Both Streets
250				50	50	50
500				60	90	100
1000				50	90	120
1500	90	120	150	60	80	120
2000	100	120	140	80	90	100
2500	90	140	150	100	100	120
3000	90	100	160			
3500	100	120	120			
4000	110	120	140			
4500	120	120	150			
5000	140	140	150			

Offset

- Concepts
- Put green time where it is needed in the cycle to maximize flow

Offset

- Guidelines
- When resources are available...
- Use PASSER II or similar software tool
- When resources are not available...
- Use "Kell Method" (in Handbook pp. 3-17 to 3-20)
- Graphical solution for good two-way progression
- Does not require traffic counts, just...
- Progression speed
- Splits
- Signal spacing

Offset
- Guidelines
- When resources are available...
• Use PASSER II or similar software tool
- When resources are not available...
• Use "Kell Method" (in Handbook pp. 3-17 to 3-20)
• Graphical solution for good two-way progression
• Does not require traffic counts, just...
- Progression speed
- Splits
- Signal spacing

\qquad

Offset

- Guidelines
- Start with Intersection A, then B, ... etc.
- Center red or green on working line
- Automated in TSCO \quad RAnalysis α

Offset

- TSCO Input Data
- Signal presence
- Signal location
- Offset

Offset

- TSCO Input Data

- Segment speed
- Speed of progressed traffic
- TSCO can model mid-block speed changes

- Phase splits
- Change periods

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Offset

- Worksheet Controls
- Cycle length range
- Current
- Minimum
- Maximum
- "Search"
- Find optimal offsets \& cycle length
- "Tweak"
- See if a small improvement in offsets is possible

Offset

- Measures of Effectiveness
- Bandwidth
- Larger is better
- Efficiency
- Larger is better
- Attainability
- Larger is better

Example 3: Offset

- Goals

1) Find the optimum timing plan (cycle length and offsets) for a coordinated signal system

- Steps

1) Collect signal system data
2) Identify the optimum timing plan (use TSCO)
\qquad

Example 3: Offset

- Step 1: Collect Signal System Data - Cycle length range: 60 to 80 s

Example 3: Offset

- Step 1: Collect Signal System Data

	Int. 1	Int. 3	Int. 5	Int. 9
Ph. 2 Split, \%	52	30	44	41
Ph. 2 Y +RC, s	6	4	6	6
Ph. 5 Split, \%	20	30	12	14
Ph. 5 Y RC, s	3	4	3	3
Ph. 5 Sequence	Lead	Lag	Lag	Lead
Ph. 6 Split, \%	44	33	50	42
Ph. 6 Y +RC, s	6	4	6	6

- Progression speed: 40 mph

Example 3: Offset

- Step 2: Identify Optimal Timing Plan
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example 3: Offset

Example 3: Offset

- Step 2: Identify Optimum Timing Plan
- Click the "Search" button

	Int. 1	Int. 3	Int. 5	Int. 9
Offset (s)	0	55	12	69
Cycle length: 70 s	Bandwidth: 27.0 s			

Example 4: Offset

- Given
- The signal system from Example 3 and two alternative locations for a proposed new signal
- The Questions
- What is the optimal offset for each alternative?
- What is the optimal bandwidth for each alternative?
- Which alternative is best?
\qquad

Example 4: Offset

- The Data
- Same data as for Example 3, except...
- New signal (check the box for node \# 7) - Alternative 1
- Distance (x): 4,800 ft from signal 1
- Offset: 30 s
- Alternative 2
- Distance (x): 5,200 ft from signal 1
- Offset: 30 s
- Work for 5 minutes
- Click "Tweak" to evaluate each option

Example 4: Offset

- The Answers
- Alternative 1 (4,800 ft)

Example 4: Offset

- The Answers

- Alternative 2 (5,200 ft)

Phase Sequence

- Concepts

- Order by which the phases are presented
- Lead-lead, lag-lag, lead-lag
- More discussion in Session 3

Phase Sequence

- Guidelines

- Lead-lead
- Most common
- Lag-lag
- Some districts use to improve efficiency with protected-permitted operations
- Watch out for yellow trap
- Consider maximum recall for left-turn phase
- Lead-lag
- Can improve the quality of progression
- Watch out for yellow trap
- Consider maximum recall for lagging left-turn

Force Mode

- Concepts

- Fixed mode
- Excess time from an early non-coordinated phase available to a later non-coordinated phase
- Usually more efficient than floating mode
- Floating mode
- Excess time from all non-coordinated phases available to coordinated phase
- Can be helpful IF an early return to the coordinated phase is desirable
\qquad

Force Mode

- Guidelines

- Fixed mode should be used unless...
- Extensive queues exist for the coordinated movements at the start of green and
- Minor movement volumes are low

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Transition Mode

- Concepts

- Used when a new timing plan is invoked
- Dictates how phase splits and offset are altered for the next few cycles to reflect new plan
- Modes
- Short-way
- Truncates or lengthens phases as needed
- Change is incremental and spread over several cycles
- Dwell
- Dwells in the coordinated phase until synchronized
- Change occurs in one cycle

Transition Mode

- Guidelines
- Choice of mode is based on...
- Cycle length
- Minor movement volume

Minor Movement Volume	$1^{\text {st }}$ Choice Transition Mode	
	Short Cycle	Long Cycle
Low	Dwell	Short-way
High	Dwell or Short-way	Short-way

Coordination Mode

- Concepts

- Modes vary among controller types
- Defines how and when minor movement calls received during coordinated phase are served
- Simple mode
- Any call received before yield point terminates phase and is served in sequence

- Complicated mode

- Only calls to next phase are considered just prior to their potential time period in sequence
\qquad

Coordination Mode

- Guidelines
- If pedestrian demand is significant then...
- Consider a mode that allows the coordinated phase to dwell in the WALK indication
- If volume on the cross street is light then...
- Consider a mode that yields only to the next phase during the permissive yield period (or previous phase)

Phase Settings

- Settings Defining Phase Operation
- Phase splits
- Dynamic splits
- Maximum green

Phase Splits

- Concepts
- Sum of green, yellow, and red clearance
- Non-coordinated splits based on volume (average + random excess)
- Allocate rest of cycle to coordinated phases

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Phase Splits

- Guidelines
- Handbook worksheet (p. 3-24)
- Collect volume and lane count data
- Allocate green time and compute splits (critical movement analysis)
- Automated in TSCO

Example 5: Phase Splits

- Goals

1) Determine the turn movement counts for an intersection
2) Use these counts to compute reasonable evening peak-period phase splits

- Steps

1) Collect intersection data
2) Estimate the peak-period volume
3) Compute phase splits

Example 5: Phase Splits

- Step 1: Collect Intersection Data
 - AADT
 - Major (E/W): 15,500 veh/d
 - Minor (N/S): 7,500 veh/d
 - Functional class
 - Major (E/W): arterial
 - Minor (N/S): arterial
 - Configuration
 - Major (E/W): 1 left-turn and 2 through lanes
 - Minor (N/S): 2 through lanes

\qquad

Example 5: Phase Splits

- Step 1: Collect Intersection Data
- Signal timing data
- Phasing
- Major (E/W) left-turn phase on each approach
- Major (E/W) through phase on each approach
- Minor (N/S) through phase on each approach
- Cycle length: 80 s
- Yellow + red clearance settings
- All phases: 5 s
- Minimum green settings
- Major (E/W) left-turn phase: 6 s
- Major (E/W) through phase: 12 s
- Minor (N/S) through phase: 14 s

Example 5: Phase Splits

- Step 2: Estimate Peak-Period Volume - Same volume data from Example 2

Example 5: Phase Splits

- Step 2: Estimate Peak-Period Volume

- Evening peak period was specified

Example 5: Phase Splits

- Step 2: Estimate Peak-Period Volume - Transfer from "Volumes" tab into "Splits" tab
- Type each number using keyboard, or
- Copy and paste the values
"Volumes" row 34:

Example 5: Phase Splits

- Step 3: Compute Phase Splits
- Cycle length: 80 s
$\overline{\text { Splits } / 2}$
- Approach configuration:
- E/W: 1 left-turn + 2 through lanes, LT \& TH phase
- N/S: 2 through lanes, LT \& TH in same phase

Example 5: Phase Splits

- Step 3: Compute Phase Splits
- Yellow + red clearance settings
- All phases: 5 s
- Minimum green settings
- Major (E/W) left-turn phase: 6 s
- Major (E/W) through phase: 12 s
- Minor (N/S) through phase: 14 s

Example 5: Phase Splits

- Step 3: Compute Phase Splits
- Results from "Splits" worksheet
- 63 percent of cycle available for phases 2 \& 6
 Comptried Phase
Phase split (T). s Phase split (T),
(See note 5$)$

Equivalent ring structure

Example 6: Phase Splits

- Given
- AADTs, approach configurations, and phasing data for an intersection
- The Question
- What phase splits should be used for each movement phase?

Example 6: Phase Splits

- The Data
- Same data as for Example 5, except...
- Phasing
- Minor (N/S) left-turn phase on each approach
- Cycle length: 70 s
- Minor (N/S) left-turn lanes: 1 per approach
- Minimum green settings:
- Minor (N/S) left-turn phase: $6 \mathbf{s}$
- Work for 5 minutes

Example 6: Phase Splits

- The Answers

Dynamic Splits

- Concepts
- Controller automatically adjusts the phase splits on a cycle-by-cycle basis
- Takes time from a light non-coordinated phase (gapping out) to a heavier noncoordinated phase (being forced off)
- Works in coordinated mode
- Does not work if maximum recall is used
- Lagging left-turn phases are often on maximum recall

Dynamic Splits

- Guidelines

- Limited information on this setting
- Research indicates benefits obtained when...
- Left-turn phases lead the through phases
- Traffic volumes vary significantly and unpredictably
- May also be beneficial if resources limit the frequency of timing plan updates

Maximum Green

- Guidelines

- Most controllers have the option to limit the split duration
- Max 1
- Max 2
- Max inhibit
- Maximum green is redundant to force off
- Inhibit maximum green termination during coordinated operation
- Maximum recall can still be used

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3. Signal Phasing \& Operation

- Appendix A Guidelines
- Left-turn operational mode
- Left-turn phasing
- Right-turn phasing
- Pedestrian phasing
*

E ($)(-\leftrightarrow-6$

Left-Turn Operational Mode

- Concepts
- Permissive (9)
- Left-turn drivers yield to oncoming vehicles
- Protected
- Left-turn drivers have right-of-way
- Protected-permissive
- Left-turn drivers have a protected phase
- They can also turn during green ball, after yielding to oncoming vehicles

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Left-Turn Operational Mode

- Guidelines
- Flow chart from Handbook p. A-9 - 11 questions
- Consider each approach separately
- Automated in TSCO "Left-Turn Mode" worksheet

Example 7: Left-Turn Mode

- Goals

1) Choose left-turn modes for each approach at an intersection

- Steps

1) Collect intersection data
2) Choose left-turn modes

Example 7: Left-Turn Mode

- Step 1: Collect Intersection Data
- Cycle length: 100 s
- Volume and lane geometry
- All approaches have 2 through lanes
- E/W approaches have 1 left-turn lane

Example 7: Left-Turn Mode

- Step 1: Collect Intersection Data
- Crash history

Approach	EB	WB	NB	SB
Crashes	4	5	4	2

- Time period for crashes: 2 years
- Approach speeds
- E/W: 45 mph
- N/S: 35 mph
- Sight Distance
- Adequate for left-turn drivers

Example 7: Left-Turn Mode

- Step 2: Choose Left-Turn Modes
- Enter input data
- Verify volume, lane data
- Enter crash history
- Enter speed
- Indicate whether sight distance is adequate

\qquad

Example 7: Left-Turn Mode

- Step 2: Choose Left-Turn Modes

Example 8: Left-Turn Mode

- Given
- Volumes, lane counts, and operational data for an intersection
- The Question
- What left-turn mode should be used for each intersection approach?

Example 8: Left-Turn Mode

- The Data

- Time period for crashes: 2 years
- Approach speed
- E/W: $45 \mathrm{mph}, \mathrm{N} / \mathrm{S}: 35 \mathrm{mph}$
- Sight distance
- E/W: $335 \mathrm{ft}, \mathrm{N} / \mathrm{S}: 400 \mathrm{ft}$ (compare with row 18 values)
- Work for 5 minutes

\qquad

Example 8: Left-Turn Mode

- The Answer

Left-Turn Phasing

- Concepts
- Sequence of service provided to left-turn phases, relative to other phases
- Options
- Permissive-only (no left-turn phase)
- Leading left-turn phase
- Lagging left-turn phase
- Split

Left-Turn Phasing

Left-Turn Phasing

- Concepts

- Yellow trap
- Can occur with lead-lag or lag-lag sequence and protected-permissive mode
- Conflict between left-turn and oncoming vehicles at the end of the adjacent through phase
- Stage 1 Stage 1

Left-Turn Phasing

- Concepts

- Trap occurs to the left-turn movement adjacent to the first though phase that ends
- Stage 2 - change interval for southbound

Left-Turn Phasing

- Concepts
- Dallas phasing solution to yellow trap problem
- Green ball in left-turn head is assigned to an overlap with adjacent and opposing through phases
- Use louvers to prevent this indication from being seen by adjacent through movement
Stage 2
Southbound Indications
0 OD OQ

Left-Turn Phasing

- Guidelines

- Lead-lead phasing
- Consistent with driver expectation
- Minimizes conflict between left turn and through vehicles by...
- Clears left-turn vehicles during initial protected phase, leaving few permissive left-turns
- Clears left-turn vehicles that may have spilled back into through lanes before the through phase starts

Left-Turn Phasing

- Guidelines
- Lag-lag phasing
- Ensures both through phases start together
- With protected-permissive mode...
- Minimizes the need to call the left-turn phase
- Reduces delay to left-turn movements that may arrive with the through platoon
- Yellow trap problem can be created

Left-Turn Phasing
- Guidelines - Lag-lag phasing - Ensures both through phases start together - With protected-permissive mode... - Minimizes the need to call the left-turn phase - Reduces delay to left-turn movements that may arrive with the through platoon - Yellow trap problem can be created

\qquad

Left-Turn Phasing

- Guidelines

- Lead-lag phasing
- Can improve progression
- Can be used when leading left-turn phase serves left-turns from a shared lane
- With protected-permissive mode...
- Yellow trap can be a problem

Left-Turn Phasing

- Guidelines
- Split phasing
- Less efficient than lead-lead, lead-lag, lag-lag - May be helpful if...
- Travel paths of left-turns from opposing approaches cross within intersection
- Left-turn and through must share a lane but leftturn phase is also required
- Crash history of left-turn vehicles includes a large number of...
"Side swipe
" Head on

Right-Turn Phasing

- Concepts

- Typically using overlap with left-turn phase

Right-Turn Phasing

- Guidelines
- All of the following should be satisfied...
- Exclusive right-turn lane is available
- Right-turn volume is high ($300 \mathrm{veh} / \mathrm{h}$ or more)
- Left-turn phase is provided
- U-turns are prohibited

- Operational mode

- If pedestrians are present, use protectedpermissive mode
- If no pedestrians, use protected mode during both the left-turn and adjacent through phases
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pedestrian Phasing

- Concepts
- Alternative pedestrian phasing
- Leading pedestrian walk
- Concurrent with adjacent through movement phase
- Lagging pedestrian walk
- Concurrent with adjacent through movement phase
- Exclusive
- Additional phase for pedestrians

Pedestrian Phasing

- Guidelines
- Leading pedestrian walk
- Use where there are significant pedestrianvehicle conflicts
- Lagging pedestrian walk
- Use where the right-turn volume is high, and
- There is an exclusive right-turn lane, or
- The two streets serve one-way traffic

- Exclusive

- Use where there are high pedestrian volumes and significant conflicts with vehicles
- Minimize impact to vehicle operation

Summary

- Appendix A Guidelines
- Left-turn operational mode
- Left-turn phasing
- Right-turn phasing
- Pedestrian phasing
- Questions?

4. Advanced Signal Timing Settings

- Appendix B Guidelines
- Dynamic maximum green settings
- Variable initial settings
- Gap reduction settings
- Phase-sequence-related settings
- Rail preemption settings
\qquad

4. Advanced Signal Timing Settings
- Appendix B Guidelines
- Dynamic maximum green settings
- Variable initial settings
- Gap reduction settings
- Phase-sequence-related settings
- Rail preemption settings

Advanced Signal Timing Settings

- Overview
- Often used when conditions are unusual
- Have influence on safety or operations

Feature	Primary Influence of Feature	
	Operations	Safety
Dynamic maximum	Yes	
Variable initial	Yes	
Gap reduction	Yes	
Phase-sequence settings	Yes	Yes
Rail preemption		Yes

Dynamic Maximum Green

- Concepts
- Changes the maximum green in real time
- Responds to phases that consistently maxout or gap-out
- Responds in a gradual manner
- User defined
- Set on a phase-by-phase basis

152

Dynamic Maximum Green

- Concepts

- Dynamic maximum limit
- The boundary within which the green interval can be varied
- Dynamic maximum step
- Amount of time added or subtracted during each adjustment
\qquad

Dynamic Maximum Green
- Concepts
- Dynamic maximum limit
• The boundary within which the green interval
can be varied
- Dynamic maximum step
• Amount of time added or subtracted during
each adjustment

Dynamic Maximum Green

- Concepts

Dynamic Maximum Green

- Guidelines
- Use for phases serving movements that are...
- low-speed,
- not coordinated, and
- unpredictable in terms of traffic volume level - Special events or incidents
- Operation is based on phase max-out
- Not desirable for high-speed approaches
- If traffic demand is predictable, use settings by time-of-day

Dynamic Maximum Green

- Guidelines

- Dynamic maximum limit
- Larger than maximum green setting
- Large enough to accommodate peak without creating damaging queues elsewhere
- Dynamic maximum step
- Relatively short
- Balance between responsiveness and efficiency
- Value of 5 to 10 s

Dynamic Maximum Green
- Guidelines
- Dynamic maximum limit
• Larger than maximum green setting
• Large enough to accommodate peak without
creating damaging queues elsewhere
- Dynamic maximum step
• Relatively short
- Balance between responsiveness and efficiency
- Value of 5 to 10 s

\qquad

Variable Initial Settings

- Concepts
- Used to ensure that vehicles queued between the stop line and the nearest upstream detector are served
- Typical application
- Through movement with one or more upstream detectors present
- No stop bar detector present
- Settings
- Added initial
- Maximum initial

Variable Initial Settings

- Concepts

- Computes the minimum green duration based on arrivals during red or yellow

- Added initial

- Amount by which the variable initial time period increases for each vehicle actuation in yellow or red
- Maximum initial
- Upper limit on the duration of variable initial timing period

Variable Initial Settings
- Concepts
- Computes the minimum green duration
based on arrivals during red or yellow
- Added initial
- Amount by which the variable initial time
period increases for each vehicle actuation in
yellow or red
- Maximum initial
- Upper limit on the duration of variable initial
timing period

\qquad

Variable Initial Settings

- Concepts

Added Initial

- Guidelines
Right-turn on red significant No right-turn on red Number of Detectors Added Initial, s/actuation 1 Minimum Desirable 2 2.0 2.5 3 1.3 1.5 4 0.8 1.0 5 0.6 0.8 6 or more 0.5 0.6 1 0.4 0.5

1 - Total number of advance detectors associated with the subject phase

Maximum Initial

- Guidelines

- Max. Initial (sec) = Distance (feet)/10

Maximum Initial	
- Guidelines - Max. Initial (sec) = Distance (feet)/10 Distance between Stop Line and Nearest Upstream Detector, ft Maximum Initial, s 151 to 175 17 176 to 200 19 201 to 225 21 226 to 250 23 251 to 275 25 276 to 300 27 301 to 325 29 326 to 350 31	

Gap Reduction Settings

- Concepts

- Used to ensure queue clearance
- Typical applications
- Phases serving high-volume movements
- Provides queue clearance but less likely to extend to maximum green limit
- Reduces delay to waiting movements
- Phases serving high truck volumes
- Settings
- Passage time
- Time before reduction
- Time to reduce

Minimum gap
\qquad

Gap Reduction Settings

- Concepts
- Reduces the extension time limit as the green interval duration increases
- Time before reduction
- Initial portion of the green interval before the extension timer limit is reduced
- Time to reduce
- Portion of the green interval during which the extension timer limit is reduced
- Minimum gap
- Extension timer limit after the time-to-reduce period
- Equal to the passage time setting

Gap Reduction Settings

- Concepts

Passage Time

- Guidelines

- Single advance detector
- Use 3.5 s
- Stop line detection
- See table below
- Presence mode

Detection Zone Length, ft	$85{ }^{\text {th }}$ Percentile Speed, mph				
	25	30	35	40	45
	Passage Time (PT), s				
20	3.0	3.0	3.0	3.5	3.5
40	2.0	2.5	2.5	3.0	3.0
60	1.5	2.0	2.5	2.5	2.5
80	1.0	1.5	2.0	2.0	2.5

Time Before Reduction

- Guidelines

- Use the larger of..
- Minimum green or maximum initial, and
- 10 seconds

Time To Reduce

- Guidelines
- Equal to one half of the difference between the minimum and maximum green settings
- Equation TTR $=\left(G_{\max }-G_{\min }\right) / 2$

Minimum Green Setting, s	Time Before Reduction, s	Maximum Green Setting, s							
		20	25	30	35	40	45	50	55
		Time To Reduce, s							
5	10	8	10	13	15	18	20	23	25
10	10	5	8	10	13	15	18	20	23
15	15	n.a.	5	8	10	13	15	18	20
20	20	n.a.	n.a.	5	8	10	13	15	18

Minimum Gap

- Guidelines

- Presence mode
- See table below
- Steep upgrade and heavy vehicles
- Increase by up to 1.0 second
- Presence mode

Detection Zone Length, ft	$85^{\text {th }}$ Percentile Speed, mph									
	25	30	35	40	45	50	55	60	65	70
	Minimum Gap, s									
6	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
20	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5	1.5	1.5
40	0.0	0.5	0.5	1.0	1.0	1.0	1.0	1.5	1.5	1.5
60	0.0	0.0	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0
80	0.0	0.0	0.0	0.0	0.5	0.5	0.5	1.0	1.0	1.0

Phase-Sequence Settings

- Conditional Service
- Allow a previous phase in the ring to be serviced under certain conditions
- Sometimes used for left-turn phases
- Simultaneous Gap-Out
- Ensures that active phases in both rings are in agreement to terminate (gap-out, max-out, etc.)
- Typically used for all phases ending at barrier
- Dual Entry
- Ensures one phase in each ring served even if only one is called
- Typically used for through movement phases

Rail Preemption Settings

- Settings

- Right-of-way transfer
- Priority status
- Preempt delay
- Preempt memory
- Preempt minimum green and walk
- Preempt pedestrian change
- Track clear
- Track clear phases
- Track green
- Dwell phases
- Exit phases

\qquad

Right-of-Way Transfer

- Concepts

- Priority status
- Several preempts available
- Priority determines which is used if several are called at the same time
- Preempt delay
- Time lag between detection and call for preempt
- Preempt memory
- With memory "on", a detection is retained after it is received and regardless if it subsequently dropped

Right-of-Way Transfer

- Concepts
- Minimum green and minimum walk
- Minimum length of the green interval of phase that is active prior to preempt

- Pedestrian change

- Minimum length of time provided for pedestrian change interval of a phase that is active prior to preempt
- Follows the walk interval

Right-of-Way Transfer

- Guidelines

- Priority status
- Rail is assigned to Preempt 1
- In special cases two preempts are used
- Preempt delay
- Normally 0.0 s
- Some delay may be needed where rail switching occurs
- Preempt memory
- Should be operated with memory "on"
- Exceptions

> - Phantom preempt calls occur
> - Multiple tracks with multiple preempts

Right-of-Way Transfer

- Guidelines

- Minimum green and minimum walk
- Should not be set to less than 2.0 s
- A value less than 2.0 s may be used if needed to satisfy warning time requirements

- Pedestrian change

- Provide normal change interval if possible
- TMUTCD permits truncation of this interval if needed to ensure preemption time does not exceed warning time
- Check the truncation exposure for peds

Track Clear

- Concepts

- Track clear phases
- Phases that serve vehicles queued over the tracks during preempt sequence
- Track green
- Duration of green interval for track clear phase

Track Clear

- Guidelines

- Track clear phases
- Green indication should always be used
- Flashing red or yellow is not recommended
- Track green
- Minimum duration is equal to the queue clearance time
- Desirable duration is equal to APT + 15 s
- This duration will avoid a preempt trap

Track Clear
- Guidelines
- Track clear phases
- Green indication should always be used
- Frashing red or yellow is not recommended
- Track green
- Minimum duration is equal to the queue
clearance time
- Desirable duration is equal to APT +15 s
- This duration will avoid a preempt trap

\qquad

Dwell and Exit Phases

- Concepts
- Dwell phases
- Follows the track clear phases
- Cycles through phases that do not conflict with railroad crossing
- Exit phases
- Phases that are active during the exit period
- One phase per ring

Dwell and Exit Phases

- Guidelines

- Dwell phases
- All phases serving movements not blocked by the train
- All dwell phases should be served in sequence during dwell period
- Signal operation in flash mode is not recommended
- Exit phases
- Typically the phases held in red (omitted) while the train is present

Preempt Trap

- Concepts

- Characteristics

- Train arrives when controller is serving the track clear phase
- Right-of-way transfer time is short
- Track clear phase ends before the gates go down
- More likely to occur with advance preemption time
\qquad

Preempt Trap
- Concepts
- Characteristics
• Train arrives when controller is serving the track
- Clear phase
- Right-of-way transfer time is short
- Track clear phase ends before the gates go down
preemption time timely occur with advance

TSCO Demonstration

- Vehicle-Gate Interaction Check
- Minimum APT time to prevent gate from striking design vehicle
- Compare result to APT (row 33)
- If less than APT, no problem
- If greater than APT, gate strikes vehicle

Example 9 - Preemption

- Goals
- Evaluate preemptions scenarios for an atgrade intersection
- Steps
- Collect information
- Geometry
- Phasing
- Enter all data in the worksheet

Example 9 - Preemption

- Right-of-Way Transfer

- What is the pedestrian change interval (PCI)?
- What is the right-of-way transfer time?

Example 9 - Preemption

- Queue Clearance Time

- What is the queue clearance time?
- What is the max. preemption time?

Example 9 - Preemption

- Warning Time Check
- What is the available warning time?
- Is it adequate (see Track)?

Example 9 - Preemption

- Track Clearance Green Time

- Preempt trap check

- What is the minimum track clearance green time?
- Does the green extend beyond "gate down"?
- Clearing of clear storage distance
- What is the time to clear the clear storage distance?
- Vehicle-Gate Interaction Check
- Distance from gate to vehicle (d) = 12 ft
- What APT is needed to avoid vehicle-gate interaction?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary

- Appendix B Guidelines
- Dynamic maximum green settings
- Variable initial settings
- Gap reduction settings
- Phase-sequence-related settings
- Rail preemption settings
- Questions?

5. Detection Design \& Operation

- Appendix C Concepts
- Indecision zone
- Detection-related control settings
- Appendix C Guidelines
- Loop detection layout for low speeds
- Loop detection layout for high speeds
- Video detection design
- Video detection layout for low speeds

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Indecision Zone

- Concepts

- Beginning of zone
- 5.5 seconds of travel time from the stop line
- $90^{\text {th }}$ percentile driver

- End of zone

- 2.5 seconds of travel time from the stop line
- $10^{\text {th }}$ percentile driver
- Exists every cycle after the onset of yellow
- Advance detection
- Used to minimize instances where vehicles are caught in indecision zone at yellow onset

Detection-Related Settings

- Concepts
- Controller memory
- Locking
- Actuations received on yellow or red are kept until served
- Used for phases served by advance detection and no recall
- Nonlocking
- Actuations are dropped as soon as vehicle leaves the detector
- Most appropriate for phases served by stop line detection

\qquad

Loop Layout for Low Speeds

- Guidelines
- $85^{\text {th }}$ percentile speed of 40 mph or less
- Objectives
- Inform the controller of waiting traffic
- Serve the queue in each phase
- Detector location
- Near stop line
- Applicable movements
- Through
- Left turn
- Right turn

Loop Layout for Low Speeds

- Guidelines
- Detection length
- Longer lengths provide better information
- Through movement

Through Movement

Delay setting: 0 s
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Loop Layout for Low Speeds

- Guidelines
- Left-turn movement
- Protected or protected-permissive

Left-Turn Movement: Protected or Protected-Permissive Mode

Loop Layout for Low Speeds

- Guidelines
- Left-turn movement
- Permissive-only

Loop Layout for High Speeds

- Guidelines

- $85^{\text {th }}$ percentile speed of 45 mph or more
- Objectives
- Inform the controller of waiting traffic
- Serve the queue in each phase
- Provide safe termination of green interval
- Detector location
- In advance of intersection
- May be combined with stop line detection
- Applicable movements
- Through
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Loop Layout for High Speeds

```
-Guidelines
- Detection options
- Option 1
```



```
- Advance detection and stop line detection
- Stop line detection disabled after queue clears
- Option 2
- Advance detection only
- Need to use locking or recall features
- Option 3
- Advance detection and stop line detection
- Stop line detection always on
```


Loop Layout for High Speeds

- Guidelines
- Option 1
- Most effective
- Requires one lead-in for advance detection
- Requires one lead-in for stop line detection
- Option 2
- No stop line detection to maintain
- Delay may be higher
- Option 3
- Used when stop line and advance detection use common lead-in
- Least effective

Loop Layout for High Speeds

- Guidelines
- Advance detectors are 6 ft in length

Category	Percentile Speed, mph	Design Element	Design Values by DetectionOption		
			Option 1	Option 2	Option 3
Detection layout	70	Distance from the stop line to the upstream edge of the advance detector, ft	600, 475, 350		
	65		540, 430, 320		
	60		475, 375, 275		
	55		415, 320, 225		
	50		350, 220		
	45		330, 210		
	45 to 70	Stop line detection zone length, ft	40	not used	40
	45 to 70	Advance detection lead-ins wired to channel separate from stop line detection	Yes	not used	$\begin{array}{c\|} \hline \text { Not } \\ \text { necessary } \end{array}$

Loop Layout for High Speeds

- Guidelines
- Controller settings

Category	Percentile Speed, mph	Design Element	Design Values by DetectionOption		
			Option 1	Option 2	Option 3
Controller settings	70	Passage time, s	1.4 to 2.0	1.4 to 2.0	1.0 to 1.2
	65		1.6 to 2.0	1.6 to 2.0	1.0 to 1.2
	60		1.6 to 2.0	1.6 to 2.0	1.0 to 1.2
	55		1.4 to 2.0	1.4 to 2.0	1.0 to 1.2
	50		2.0	2.0	1.4 to 1.6
	45		2.0	2.0	1.4 to 1.6
	45 to 70	Detection mode	Presence	Presence	Presence
	45 to 70	Controller memory	Nonlocking	Varies	Nonlocking
	45 to 70	Stop line detection channel extend setting, s	2.0	not used	1.0
	45 to 70	Stop line detection operation	$\begin{array}{\|c\|} \hline \text { Deactivate } \\ \text { after gap- } \\ \text { out } \end{array}$	not used	Continuously active

Video Detection Design

- Guidelines
- Camera location
- Camera offset
- Camera height
- Field-of-view calibration
- Application
- Low-speed movements
- Other detection systems may be better suited to advance detection for high-speed movements

Video Detection Design

- Guidelines

- Camera offset
- When mast arms are used to support the signal heads, location A or B is recommended
- It eliminates adjacent lane occlusion
- When span wire is used, location C or D is recommended - Tall vehicles may place unneeded calls

Video Detection Design								
- Guidelines - Camera height - Minimum heights to reduce occlusion								
	Camera Location	$\begin{aligned} & \text { Lateral } \\ & \text { Offtet, } \end{aligned}$	No Left-Turn Lanes			One Left-Turn Lane		
			Through + Right Lanes			Through + Right Lanes		
			1	2	3	1	2	3
Legend $M=$ mast arm $\mathrm{P}=$ strain pole $\mathrm{R}=5 \mathrm{ft}$ riser $\mathrm{L}=$ luminaire arm			Minimum Camera Height and Typical Camera Mount, ft					
	$\begin{aligned} & \text { Left side of } \\ & \text { approach } \end{aligned}$	-65			P.R 38			P.R.L42
		-55		P, R 35	P30		P.R 39	
		-45		P 27		P, R 36	$\underline{\text { P } 32}$	
		-35	P 24	P 20		P 29		
		-25	P 20			$\underline{\mathrm{P} 21}$		
		-15	P 20					
		-5				M 20	M 20	M 20
	Center	0	M 20					
	Right side of approach	5	P20	M 20				
		15	P 20	P20	P20	P20	P20	M 23
		25	P 20	P 20	P 20	P 21	P 26	$\underline{\text { P } 30}$
		35		P 20	P 20	P 29	P 33	P, R 38
		45						

Video Detection Design

- Guidelines
- Field-of-view calibration
- Stop line should be...
- Parallel to the bottom edge of the view
- In the bottom one-third of the view
- Include all approach traffic lanes and one departing lane
- Approach width at the stop line is...
- 90 percent of the horizontal width for head-on view
- 40 to 60 percent for offset view
- View must exclude horizon

Video Detection Design

Guidelines
Camera height

Video Detection Design
- Guidelines
- Field-of-view calibration
• Stop line should be...
- Parallel to the bottom edge of the view
- In the bottom one-third of the view
- Include all approach traffic lanes and one
departing lane
- Approach width at the stop line is...
- 90 percent of the horizontal width for head-on view
- 40 to 60 percent for offset view

\qquad
\qquad

Video Detection Design

- Guidelines

- Field-of-view
- Adjustments to minimize sun glare - Use a visor
- Tilt the camera downward
- Minimum pitch of 3 degrees from the horizontal
- Adjustments to minimize lighting glare
- Avoid bright lights in the evening hours - Avoid lights that flash or vary in intensity
- Use a video recorder to check nighttime operation

Video Detection Layout

- Guidelines
- Low-speed movements
- $85^{\text {th }}$ percentile speed of 40 mph or less
- Objectives
- Inform the controller of waiting traffic
- Serve the queue in each phase
- Detector location
- Near stop line
- Applicable movements
- Through
- Left turn
- Right turn

Video Detection Layout

- Guidelines
- Detection zone location and length
- Detection mode and settings

Video Detection Layout
- Guidelines - Detection zone location and length -Detection mode and settings

\qquad

Video Detection Layout

- Guidelines

- Detection zone location
- Typically use several detectors in zone
- Locate one zone beyond stop line

Rule-of-Thumb: The detection zone should consist of one or more
detectors, with each detector about the size of a car. Detectors may detectors, with each detector about the size of a car. Detectors may
be overlapping. Those beyond the stop line also detect headlights.

Video Detection Layout

- Guidelines
- Detection zone length
- Use passage time of 0.0 s
- Use zone length (in ft) $=3 \times 85^{\text {th }} \%$ speed in mph

$85^{\text {th }}$ Percentile Speed, mph	Distance between Camera and Stop Line, ft	Camera Height, ft			
		20	24	28	32
		Stop Line Detection Zone Length, ft			
20	50	55	55	55	60
	100	45	45	50	50
	150	30	35	40	45
30	50	95	95	95	95
	100	80	85	90	90
	150	70	75	80	85
40	50	130	135	135	135
	100	120	125	125	130
	150	110	115	120	120

Video Detection Layout

- Guidelines

- Detection mode and settings

Summary

- Appendix C Guidelines
- Loop detection layout for low speeds
- Loop detection layout for high speeds
- Video detection design
- Video detection layout for low speeds
- Questions?

6. Diamond Interchange Operations

- Appendix D Concepts
- Appendix D Guidelines

Diamond Interchange Operations

- Concepts

- Interchange spacing
- Traffic patterns
- Types of traffic signal control
- Phase sequence
- Conditional service

Phase Sequence

- Concepts
- Three phase
- Four phase
- Separate intersection
- Two-phase

Phase Sequence

- Concepts

- Three-phase characteristics
- Arterial through traffic typically has good progression through the interchange - Can have coordination with adjacent signals
- Adequate interior storage is needed when serving frontage road phases
- Frontage road volumes should be reasonably balanced

Phase Sequence
- Concepts
- Three-phase characteristics
• Arterial through traffic typically has good
progression through the interchange
- Can have coordination with adjacent signals
- Adequate interior storage is needed when
serving frontage road phases
- Frontage road volumes should be
reasonably balanced

\qquad

Phase Sequence

- Concepts

- Four-phase sequence
- Four external phases
- Each external movement served in sequence
- Includes two fixed transition intervals

Phase Sequence
- Concepts
- Four-phase characteristics
- Arterial traffic has good progression through
the interchange
- Coordination with adjacent signals is difficult
- External phases are fully actuated
- Can adjust to variations in traffic demand
- Internal movements always clear the interior of
the interchange
- Two transition intervals improve throughput
during high-volume conditions
- Can be inefficient during low-volume conditions

Phase Sequence

- Concepts

- Separate intersection characteristics
- Offers some flexibility in phasing that was available with two controllers
- Uses only lead-lead phasing sequence
- Can operate fully actuated
- Each ring fully actuated and isolated
- Can be used to provide good coordination between the two intersections

Phase Sequence

- Concepts

- Two-phase sequence
- Assigns one ring to control each intersection
- Omits the internal left-turn phases
- These left-turn movements are served permissively

Right thersection

Phase Sequence

- Concepts

- Two-phase characteristics
- Used at locations with protected-permissive internal left-turn phases
- Can reduce the delay for all major movements
- Most effective when...
- Interior left turn movements are very light
- Overall volumes are low (e.g., nighttime)
- Implemented after placing the controller in the separate intersection

Conditional Service

- Concepts

- Controller will invoke if...
- Conditional service is enabled
- One of the frontage road phases gaps out
- There is a call on the internal left-turn phase
- There is sufficient time to serve the minimum green of the internal left-turn phase

Ring Structure

10	4	2	1
14	8	6	5

Conditional Service

Diamond Interchange Operations

- Appendix D Guidelines
- Selection of phase sequence
- Actuated phase settings
- Loop detection layout for low speeds
- Loop detection layout for high speeds
- Configuration of video detection outputs
- Conditional service
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Selection of Phase Sequence

- Guidelines
- Selection of phase sequence
- Narrow interchanges (< 400 ft)

Interchange Spacing	Arterial Through Traffic Volume	Frontage Road Traffic Pattern	Internal Left- Turn Traffic Volume	Typical Phase Sequence
Less than 400 ft (narrow)	Unbalanced	Balanced	Low	Four
		High		
		Unbalanced	Low	
		High		
		Balanced	Low	Four or three
	Balanced	High	Four	
			Low	Four or three
		Unbalanced	High	Four

Selection of Phase Sequence

- Guidelines
- Selection of phase sequence
- Intermediate interchanges (400 ft to $\mathbf{8 0 0} \mathbf{~ f t}$)

Interchange Spacing	Arterial Through Traffic Volume	Frontage Road Traffic Pattern	Internal Left- Turn Traffic Volume	Typical Phase Sequence
Between 400 and 800 ft (intermediate)	Unbalanced	Balanced	Low	Three
			High	Three or separate
		Unbalanced	Low	Separate
		High		
	Balanced	Balanced	Low	Three
		High		
		Unbalanced	Low	Separate
			High	Three or separate

Selection of Phase Sequence

- Guidelines
- Selection of phase sequence
-Wide interchanges (> 800 ft)

Selection of Phase Sequence				
- Guidelines - Selection of phase sequence - Wide interchanges (> $\mathbf{8 0 0} \mathbf{f t}$)				
Interchange Spacing	Arterial Through Traffic Volume	Frontage Road Traffic Pattern	Internal LeftTurn Traffic Volume	Typical Phase Sequence
$\begin{aligned} & \hline \begin{array}{l} \text { More than } \\ 800 \mathrm{ft} \\ \text { (wide) } \end{array} \\ & \hline \end{aligned}$	Unbalanced	Balanced	Low	Three
			High	Separate
		Unbalanced	Low	Separate
			High	
	Balanced	Balanced	Low	Three
			High	
		Unbalanced	Low	Separate
			High	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Minimum Green
- Guidelines
- Except as noted, minimum green is based
on guidelines provided in Chapter 2
- Driver expectancy
• Pedestrian crossing time

Minimum Green									
- Guidelines - Three-phase sequence - Phase 2 and 6 minimum green - Need to ensure that a vehicle starting on the arterial approach is not stopped in the interior									
Spacing, ft	Travel Time (T), s	Minimum Green for Phase 1, s				Minimum Green for Phase 5, s			
		5	6	7	8	5	6	7	8
		Minimum Green for Phase 2, s				Minimum Green for Phase 6, s			
400	15	5	5	5	5	5	5	5	5
500	17	7	6	5	5	7	6	5	5
600	19	9	8	7	6	9	8	7	6
700	21	11	10	9	8	11	10	9	8
800	24	14	13	12	11	14	13	12	11
900	26	16	15	14	13	16	15	14	13
1000	28	18	17	16	15	18	17	16	15

Minimum Green

- Guidelines

- Four-phase sequence
- Phases 2, 4, 6, 8, 12, and 16 minimum green should equal the larger of...
- Min. green based on driver expectancy
- Min. green based on pedestrian crossing time
- Travel time within the interchange

Interchange Spacing, ft	Travel Time (T), s	Minimum Green for Phases 2 and 6, s	Minimum Green for Phases 4 and 8, s	Minimum Green for Phases 12 and 16, s
100	7	9	5	2
200	10	15	7	3
300	12	20	9	5
400	15	24	12	8

Maximum Green
- Guidelines
- Except as noted, maximum green is based
on guidelines provided in Chapter 2
- Volume
- Movement (turn or through)
- Speed
Minimum green setting

Maximum Green

- Guidelines

- Three-phase sequence
- Phase 1 and 5 max. based on travel time
- Phase 4 and 8 based on internal storage
- Phase 10 max. = phase 10 min . (same for 14)

Interchange Spacing (S), ft	Travel Time $(T), \mathbf{s}$	Maximum Green for Phases 1 and 5, s	Maximum Green for Phases 4 and 8, \mathbf{s}
400	15	15	34
500	17	17	42
600	19	19	50
700	21	21	58
800	24	24	66
900	26	26	74
1000	28	28	82

Maximum Green

- Guidelines
- Four-phase sequence
- Phase 12 max. green = phase 12 min . green
- Phase 16 max. green = phase 16 min . green

Loop Detection for Low Speeds

- Guidelines

- 85th percentile speed of 40 mph or less
- Use both stop line and advance detectors
- Detector channel numbers

Loop Detection for Low Speeds

- Guidelines
- Three-phase sequence
- Phases 1, 2, 5, and 6
- Phases 4 and 8
- Separate intersection sequence

Loop Detection for Low Speeds

- Guidelines

- Four-phase sequence
- Phases 1, 2, 5, and 6
- Phases 4 and 8

$85^{\text {th }}$PercentileSpeed,mph	Phases 1, 2, 5, and 6		Frontage Road Phases 4 and 8				
	Advance Detector Distance (S1), ft	Passage Time, s	Interchange Spacing, ft				Passage Time, s
			100	200	300	400	
			Advance Detector Distance (S1), ft				
30	100	2.0 to 3.0	260	355	435	510	2.0 to 3.0
35	135	2.0 to 3.0	305	415	505	595	2.0 to 3.0
40	170	2.0 to 3.0	350	475	575	680	2.0 to 3.0

Loop Detection for High Speeds

- Guidelines

- $85^{\text {th }}$ percentile speed of 45 mph or more
- Use both stop line and advance detectors
- Detector channel numbers

Loop Detection for High Speeds

- Guidelines

- Three-phase sequence
- Phases 1, 2, 5, and 6
- Phases 4 and 8
- Separate intersection sequence

Loop Detection for High Speeds

- Guidelines
- Four-phase sequence
- Phases 1, 2, 5, and 6
- Phases 4 and 8

	Phases 1, 2, 5, and 6				Frontage Road Phases 4 and 8				
	Advance Detector Distance, ft			Passage Time, s	Interchange Spacing, ft			Passage Time, s	
				100	200	300			
	S1	S2	S3		Advance Detector Distance (S1), ft				
45	210	330	-		2.0	390	535	650	2.0 to 3.0
55	225	320	415	1.4 to 2.0	480	650	700	2.0 to 3.0	
65	320	430	540	1.6 to 2	565	700	700	2.0 to 3.0	

Video Detection Design

- Guidelines
- Typically use six cameras
- Three per intersection
- High-speed approaches may use multiple cameras

Video Detection Design

- Guidelines

- Typically use two channel detector cards
- Single-channel and four-channel cards are also occasionally used
- Use detector configuration meeting TxDOT specification

\qquad

Conditional Service

- Guidelines
- Conditional service can be used when...
- Three-phase operation is used
- The difference between the average green interval of the two frontage roads exceeds 10 to 12 s
- Minimum green for phases 10 and 14 is short - Typically 5 to 8 s
- Decision to use conditional service
- Based on consideration of frontage road volume
- Volume must be very unbalanced or additional delay may be incurred by arterial movements

\qquad

Wrap-Up

- Questions or Comments?
- A Request
- Please fill out the course review form
- Training course coordinators
- Return course evaluations and sign-in sheets to Henry Wickes in TRF
- Thank You!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EXAMPLE 1: MAXIMUM GREEN

Location: 4-leg signalized intersection

INPUT DATA

General Information

Phase 2 direction: Eastbound

Roadway	Major	Minor
Direction	East/West	North/South
Functional classification	Arterial	Collector
Morning and noon peak demand direction	Eastbound	Northbound
Average annual daily traffic (AADT), veh/d	10,000	5,000

Approach Configuration Data

Movements existing: Left-turn, through, and right-turn (all approaches)
Through lanes on major-road approaches: 2 (eastbound and westbound)
Signal Timing Data
Major-road minimum green setting: 10 s (eastbound and westbound)

CALCULATIONS

What is the peak-period volume (veh/h)? \qquad
What is the peak-period volume $(\mathrm{veh} / \mathrm{h} / \mathrm{ln})$?

The maximum green setting is the larger of:

1) 30 s
2) Minimum green setting $+10 \mathrm{~s}=\square \mathrm{s}+10 \mathrm{~s}=\square \mathrm{s}$
3) $1 / 10$ of the peak-period volume $=1 / 10 \mathrm{x}$ \square

OUTPUT SUMMARY

What is the maximum green setting (s)? \qquad
\square

EXAMPLE 2: MAXIMUM GREEN

Location: 4-leg signalized intersection

INPUT DATA

General Information

Phase 2 direction: Eastbound

Roadway	Major	Minor
Direction	East/West	North/South
Functional classification	Arterial	Arterial
Morning and noon peak demand direction	Eastbound	Northbound
Average annual daily traffic (AADT), veh/d	15,500	7,500

Approach Configuration Data

Movements existing: Left-turn, through, and right-turn (all approaches)
Through lanes on major-road approaches: 2 (eastbound and westbound)
Signal Timing Data

Phase	Minimum green setting, s
Major left-turn	6
Major through	12
Minor through	14

CALCULATIONS

Movement phase	Peak-period volume, veh/h	Peak-period volume, veh/h/ln	$\begin{gathered} \text { Minimum } \\ \text { green } \\ \text { setting, s } \\ \hline \end{gathered}$	Maximum green setting, s, based on. . .		
				Shortest	Min green	Volume
Major through			12	30		
Minor through			14	20		
Major left-turn			6	15		

OUTPUT SUMMARY

EXAMPLE 3: OFFSETS

Location: 4-leg signalized intersection

INPUT DATA

General Information

Cycle length range: 60 to 80 s
Phase 2 direction: Eastbound
Signal Timing Data

Phase	Intersection	1	3	5	9
	Distance coordinate (x), ft	0	2260	3950	7740
	Offset, s	0	55	6	0
1	Phase split, \% of cycle	12	33	18	15
	Yellow + red clear, s	4	4	4	4
	Phase sequence	Lead	Lead	Lead	Lag
2	Phase split, \% of cycle	52	30	44	41
	Yellow + red clear, s	6	4	6	6
	Phase split, \% of cycle	20	30	12	14
	Yellow + red clear, s	3	4	3	3
	Phase sequence	Lead	Lag	Lag	Lead
6	Phase split, \% of cycle	44	33	50	42
	Yellow + red clear, s	6	4	6	6

Segment Data

Progression speed: 40 mph (segments A, C, E, and I)

OUTPUT SUMMARY

What is the optimal cycle length (s)? ..
What are the optimal offsets (s)? Intersection 1:
Intersection 3:

EXAMPLE 4: OFFSETS

Location: 4-leg signalized intersection

INPUT DATA

General Information

Cycle length: 70 s
Phase 2 direction: Eastbound
Signal Timing Data

Phase	Intersection	1	3	5	7	9
	Distance coordinate (x), ft	0	2260	3950	*	7740
	Offset, s	0	55	6	30	0
1	Phase split, \% of cycle	12	33	18	15	15
	Yellow + red clear, s	4	4	4	4	4
	Phase sequence	Lead	Lead	Lead	Lag	Lag
2	Phase split, \% of cycle	52	30	44	44	41
	Yellow + red clear, s	6	4	6	6	6
5	Phase split, \% of cycle	20	30	12	15	14
	Yellow + red clear, s	3	4	3	3	3
	Phase sequence	Lead	Lag	Lag	Lead	Lead
6	Phase split, \% of cycle	44	33	50	44	42
	Yellow + red clear, s	6	4	6	6	6

* The distance coordinate (x) for intersection 7 is $4,800 \mathrm{ft}$ for alternative 1 and 5,200 ft for alternative 2.
Segment Data
Progression speed: 40 mph (segments A, C, E, G, and I)

OUTPUT SUMMARY

What is the optimal offset (s)? ..

What is the bandwidth (s)? \qquad Alternative 1:
Alternative 2:

Which alternative is better? \qquad
\square

EXAMPLE 5: PHASE SPLITS

Location: 4-leg signalized intersection

INPUT DATA

General Information

Cycle length: 80 s
Phase 2 direction: Eastbound
East/west road phasing: Left-turn phase and through phase
North/south road phasing: Left-turns and through movements in same phase

Roadway	Major	Minor
Direction	East/West	North/South
Functional classification	Arterial	Arterial
Morning and noon peak demand direction	Eastbound	Northbound
Average annual daily traffic (AADT), veh/d	15,500	7,500

Volume and Lane Geometry Input Data

Approach	Eastbound		Westbound		Northbound		Southbound	
Movement	Left	Thru	Left	Thru	Left	Thru	Left	Thru
Volume, veh/h	39	451	62	673	48	189	50	306
Lanes	1	2	1	2	0	2	0	2

Change Period and Minimum Green Data
Yellow + red clearance: 5 s (all phases)

Phase	Minimum green setting, s
Major left-turn	6
Major through	12
Minor through	14

OUTPUT SUMMARY

What phase splits should be used?

Approach	Eastbound		Westbound		Northbound		Southbound	
Movement	Left	Thru	Left	Thru	Left	Thru	Left	Thru
Phase split, s								
Phase split, percent of cycle								

EXAMPLE 6: PHASE SPLITS

Location: 4-leg signalized intersection

INPUT DATA

General Information

Cycle length: 70 s
Phase 2 direction: Eastbound
East/west road phasing: Left-turn phase and through phase
North/south road phasing: Left-turn phase and through phase

Roadway	Major	Minor
Direction	East/West	North/South
Functional classification	Arterial	Arterial
Morning and noon peak demand direction	Eastbound	Northbound
Average annual daily traffic (AADT), veh/d	15,500	7,500

Volume and Lane Geometry Input Data

Approach	Eastbound		Westbound		Northbound		Southbound	
Movement	Left	Thru	Left	Thru	Left	Thru	Left	Thru
Volume, veh/h	39	451	62	673	48	189	50	306
Lanes	1	2	1	2	1	2	1	2

Change Period and Minimum Green Data
Yellow + red clearance: 5 s (all phases)

Phase	Minimum green setting, s
Major through	12
Minor through	14
Major left-turn	6
Minor left-turn	6

OUTPUT SUMMARY

What phase splits should be used?

Approach	Eastbound		Westbound		Northbound		Southbound	
Movement	Left	Thru	Left	Thru	Left	Thru	Left	Thru
Phase split, s								
Phase split, percent of cycle								

EXAMPLE 7: LEFT-TURN MODE

Location: 4-leg signalized intersection

INPUT DATA

General Information

Cycle length: 100 s
Phase 2 direction: Eastbound
Volume and Lane Geometry Input Data

Approach	Eastbound		Westbound		Northbound		Southbound	
Movement	Left	Thru	Left	Thru	Left	Thru	Left	Thru
Volume, veh/h	105	502	201	806	93	408	57	104
Lanes	1	2	1	2	0	2	0	2

Crash History Data

Approach	Eastbound	Westbound	Northbound	Southbound
Left-turn crashes	4	5	4	2

Time period for crashes: 2 years

Speed and Sight Distance Data

Major-road approach speed: 45 mph (eastbound and westbound)
Minor-road approach speed: 35 mph (northbound and southbound)
Sight distance: Adequate for all left-turn movements

OUTPUT SUMMARY

What is the suggested left-turn mode? (circle one)

Approach	Eastbound	Westbound	Northbound	Southbound
	Protected-only	Protected-only	Protected-only	Protected-only
Left-turn mode	Protected- permissive	Protected- permissive	Protected- permissive	Protected- permissive
	Permissive	Permissive	Permissive	Permissive

EXAMPLE 8: LEFT-TURN MODE

Location: 4-leg signalized intersection

INPUT DATA

General Information

Cycle length: 100 s
Phase 2 direction: Eastbound
Volume and Lane Geometry Input Data

Approach	Eastbound		Westbound		Northbound		Southbound	
Movement	Left	Thru	Left	Thru	Left	Thru	Left	Thru
Volume, veh/h	39	451	62	673	48	189	50	306
Lanes	1	2	1	2	1	2	1	2

Crash History Data

Approach	Eastbound	Westbound	Northbound	Southbound
Left-turn crashes	4	5	4	2

Time period for crashes: 2 years

Speed and Sight Distance Data

East/west approach speed: 45 mph
North/south approach speed: 35 mph
East/west sight distance: 335 ft
North/south sight distance: 400 ft

OUTPUT SUMMARY

What is the suggested left-turn mode? (circle one)

Approach	Eastbound	Westbound	Northbound	Southbound
	Protected-only	Protected-only	Protected-only	Protected-only
Left-turn mode	Protected- permissive	Protected- permissive	Protected- permissive	Protected- permissive
	Permissive	Permissive	Permissive	Permissive

TRAFFIC SIGNAL OPERATIONS WORKSHOP

Date:

Location: \qquad

Your Agency: \qquad
Your Position: \qquad

Course Content (circle one)

1. Did the course meet your expectations?

Comments:
\qquad
\qquad
2. Was the material presented at the correct level of difficulty?

13235 Comments:
\qquad
\qquad
3. Was the topic of the course covered adequately (nothing left out, no one topic overemphasized)? Comments:
\qquad
\qquad
4. Was the software easy to use?

13345 Comments:

General Observations

5. What did you like most about the course?
6. What did you like the least about the course?
\qquad
7. What can we do to improve this workshop?

8. Other Comments:

Thank you for taking the time to complete this course evaluation form. Please make sure the course instructor receives it before you leave.

